《數說營銷--大數據營銷實戰(zhàn)培訓》課綱(2-4天)
《數說營銷--大數據營銷實戰(zhàn)培訓》課綱(2-4天)詳細內容
《數說營銷--大數據營銷實戰(zhàn)培訓》課綱(2-4天)
數說營銷--大數據營銷實戰(zhàn)培訓
【課程目標】
本課程從實際的市場營銷問題出發(fā),構建數據分析與數據挖掘模型,以解決實際的商業(yè)問題。并對大數據分析與挖掘技術進行了全面的介紹,通過從大量的市場營銷數據中分析潛在的客戶特征,挖掘客戶行為特點,實現精準營銷,幫助市場營銷團隊深入理解業(yè)務運作,支持業(yè)務策略制定以及運營決策。
通過本課程的學習,達到如下目的:
了解大數據營銷內容,掌握大數據在營銷中的應用。
了解基本的營銷理論,并學會基于營銷理念來展開大數據分析。
熟悉數據分析/挖掘的基本過程,掌握常用的數據挖掘方法。
熟悉Excel數據分析工具,能夠利用Excel和SPSS軟件解決實際的營銷問題(比如定價/因素影響/預測/客戶需求/客戶價值/市場細分等)。
【授課時間】
2-4天時間,或者根據培訓需求選擇組合
內容
2天
4天
核心數據思維
√
√
數據分析過程
√
√
用戶行為分析
√
√
數據分析思路
√
√
影響因素分析
√
√
產品銷量預測
√回歸時序
√季節(jié)模型
客戶行為預測
√僅決策樹
√ANN/LR
市場客戶細分
√
客戶價值評估
√
產品推薦模型
√
產品設計優(yōu)化
√
產品定價策略
√
【授課對象】
系統(tǒng)支撐、市場營銷部、運營分析部相關技術及應用人員。
本課程由淺入深,結合原理主講軟件工具應用,不需要太深的數學知識,但希望掌握數據分析的相關人員。
【學員要求】
每個學員自備一臺便攜機(必須)。
便攜機中事先安裝好Excel 2013版本及以上。
便攜機中事先安裝好IBM SPSS Statistics v24版本及以上。
注:講師可以提供試用版本軟件及分析數據源。
【授課方式】
理論精講 + 案例演練 + 實際業(yè)務問題分析 + Excel實踐操作 + SPSS實踐操作
本課程突出數據分析的實際應用,結合行業(yè)的典型應用特點,圍繞實際的商業(yè)問題,進行大數據的分析與挖掘,介紹常用的模型,以及模型適用場景,通過演練操作,以達到提升學員對營銷數據的分析以及對數據模型的深入理解。
【課程大綱】
大數據實現精準營銷
傳統(tǒng)營銷的困境與挑戰(zhàn)
營銷理論的變革(4P4CnPnC)
大數據引領傳統(tǒng)營銷
大數據在營銷中的典型應用
市場定位與客戶細分
客戶需求與產品設計
精準廣告與精準推薦
……
大數據營銷的基石:用戶畫像
客戶生存周期中的大數據應用
演練:如何用大數據來支撐手機精準營銷項目
大數據基礎-數據思維
問題:大數據的核心價值是什么?大數據是怎樣用于業(yè)務決策?
大數據時代:你缺的不是一堆方法,而是大數據思維
大數據是探索事物發(fā)展和變化規(guī)律的工具
大數據價值實現的三個關鍵環(huán)節(jié)
業(yè)務數據化
數據信息化
信息策略化
案例:喜歡賺“差價”的營業(yè)員(用數據管理來識別)
從案例看數據信息化
用趨勢圖來探索產品銷量規(guī)律
從谷歌的GFT產品探索用戶需求變化
從美國總統(tǒng)競選看大數據對選民行為進行分析
從大數據炒股看大數據如何探索因素的相關性
數據分析的三大作用
數據分析的三大類別
數據分析需要什么樣的能力
懂業(yè)務、懂管理、懂分析、懂工具、懂呈現
大數據基礎-分析過程
數據分析的六步曲
步驟1:明確目的--理清思路
確定分析目的:要解決什么樣的業(yè)務問題
確定分析思路:分解業(yè)務問題,構建分析框架
步驟2:數據收集—理清思路
明確收集數據范圍
確定收集來源
確定收集方法
步驟3:數據預處理—尋找答案
數據質量評估
數據清洗、數據處理和變量處理
探索性分析
步驟4:數據分析--尋找答案
選擇合適的分析方法
構建合適的分析模型
選擇合適的分析工具
步驟5:數據展示--觀點表達
選擇恰當的圖表
選擇合適的可視化工具
步驟6:報表撰寫--觀點表達
選擇報告種類
完整的報告結構
數據分析的三大誤區(qū)
演練:如何用大數據來支撐手機精準營銷項目
用戶行為分析—方法篇問題:數據分析有什么方法可依?不同的方法適用解決什么樣的問題?
大數據精準營銷的前提:用戶行為分析
數據分析方法的層次
基本分析法(對比/分組/結構/趨勢/…)
綜合分析法(交叉/綜合評價/杜邦/漏斗/…)
高級分析法(相關/方差/驗證/回歸/時序/…)
數據挖掘法(聚類/分類/關聯(lián)/RFM模型/…)
統(tǒng)計分析常用指標
計數、求和、百分比(增跌幅)
集中程度:均值、中位數、眾數
離散程度:極差、方差/標準差、IQR
分布形態(tài):偏度、峰度
基本分析方法及其適用場景
對比分析(查看數據差距)
演練:尋找用戶的地域分布規(guī)律
演練:尋找公司主打產品
演練:用數據來探索增量不增收困境的解決方案
案例:銀行ATM柜員機現金管理分析(銀行)分組分析(查看數據分布)
案例:排班后面隱藏的貓膩
案例:通信運營商的流量套餐劃分合理性的評估
演練:銀行用戶消費層次分析(銀行)
演練:呼叫中心接聽電話效率分析(呼叫中心)
演練:客服中心科學排班人數需求分析(客服中心)
演練:客戶年齡分布/消費分布分析結構分析(評估事物構成)
案例:用戶市場占比結構分析
案例:物流費用占比結構分析(物流)
案例:中移動用戶群動態(tài)結構分析演練:用戶結構/收入結構/產品結構的分析趨勢分析(發(fā)現事物隨時間的變化規(guī)律)
案例:破解零售店銷售規(guī)律
案例:手機銷量的淡旺季分析
演練:發(fā)現產品銷售的時間規(guī)律
交叉分析(多維數據分析)
演練:用戶性別+地域分布分析
演練:不同區(qū)域的產品偏好分析
演練:不同教育水平的業(yè)務套餐偏好分析
綜合分析方法及其適用場景
綜合評價法(多維指標歸一)
案例:南京丈母娘選女婿分析表格
演練:人才選拔評價分析(HR)
杜邦分析法(關鍵因素分析-財務數據分析)
案例:運營商市場占有率分析(通信)
案例:服務水平提升分析(呼叫中心)
演戲:提升銷量的銷售策略分析(零售商/電商)
漏斗分析法(關鍵流程環(huán)節(jié)分析-流失率與轉化率分析)
案例:電商產品銷售流程優(yōu)化與策略分析(電商)
演練:營業(yè)廳終端銷售流程分析(電信)
演練:銀行業(yè)務辦理流程優(yōu)化分析(銀行)
矩陣分析法(產品策略分析-象限圖分析法)
案例:工作安排評估
案例:HR人員考核與管理
案例:波士頓產品策略分析
最合適的分析方法才是硬道理。
用戶行為分析—思路篇
問題:數據分析思路是怎樣的?如何才能全面/系統(tǒng)地分析而不遺漏?
常用分析思路模型
用戶行為分析(5W2H分析思路)
WHY:原因
WHAT:產品
WHO:客戶
WHEN:時間
WHERE:區(qū)域/渠道
HOW:支付方式
HOW MUCH:價格
案例討論:結合公司情況,搭建用戶消費習慣的分析框架(5W2H)影響因素分析
營銷問題:哪些是影響市場銷量的關鍵因素?比如,產品在貨架上的位置是否對銷量有影響?價格和廣告開銷是如何影響銷量的?
影響風險控制的關鍵因素有哪些?如何判斷?
影響因素分析的常見方法
相關分析(因素影響的相關性分析,相關程度計算)
相關系數
解讀相關系數
案例:體重與腰圍的相關分析
案例:推廣費用與銷售金額的相關分析
方差分析(影響關鍵因素分析,影響因素組合分析)
方差分析模型及適用場景
單因素分析/多因素分析
案例:終端陳列位置對銷量的影響分析
案例:廣告形式、地區(qū)對銷量的影響因素分析
列聯(lián)分析(影響關鍵因素分析)
交叉表與列聯(lián)表
卡方檢驗的原理
案例:套餐類型與客戶流失是否有關系?
案例:學歷與套餐偏好的關系分析
產品銷量預測
營銷問題:如何預測未來的產品銷量?如果產品跟隨季節(jié)性變動,該如何預測?新產品上市,如果評估銷量上限及銷售增速?
銷量預測與市場預測模型介紹
時序預測
回歸模型
季節(jié)性預測(相加/相乘模型)
產品預測(珀爾曲線/龔鉑茲曲線)
回歸分析/回歸預測
問題:如何預測未來的銷售量(定量分析)?
回歸分析簡介
回歸分析的種類(一元/多元、線性/曲線)
得到回歸方程的常用工具
散點圖+趨勢線
線性回歸工具
規(guī)劃求解工具
演練:散點圖找營銷費用與銷售額的關系(一元回歸)
線性回歸分析的五個步驟
演練:營銷費用、辦公費用與銷售額的關系(線性回歸)
解讀線性回歸分析結果的技巧
定性描述:正相關/負相關
定量描述:自變量變化導致因變量的變化程度
回歸預測模型質量
評估指標:判定系數R^2、
如何選擇最佳回歸模型
演練:如何選擇最佳的回歸預測模型(一元曲線回歸)
預測值準確性評估
MAD、MSE/RMSE、MAPE等
演練:如何選擇最佳的回歸預測模型(一元曲線回歸)
帶分類變量的回歸預測
演練:汽車季度銷量預測
演練:工齡、性別與終端銷量的關系
演練:如何評估銷售目標與資源配置(營業(yè)廳)
時序預測模型
移動平均(MA)
應用場景及原理
移動平均種類
一次移動平均
二次移動平均
加權移動平均
移動平均比率法
移動平均關鍵問題
期數N的最佳選擇方法
最優(yōu)權重系數的選取方法
演練:平板電腦銷量預測及評估
演練:快銷產品季節(jié)銷量預測及評估
指數平滑(ES)
應用場景及原理
最優(yōu)平滑系數的選取原則
指數平滑種類
一次指數平滑
二次指數平滑(Brown線性、Holt線性、Holt指數、阻尼線性、阻尼指數)
三次指數平滑
演練:煤炭產量預測
演練:航空旅客量預測及評估
溫特斯季節(jié)預測模型
適用場景及原理
Holt-Winters加法模型
Holt-Winters乘法模型
演練:汽車銷量預測及評估
季節(jié)性預測模型
季節(jié)性回歸模型的參數
常用季節(jié)性預測模型(相加、相乘)
案例:美國航空旅客里程的季節(jié)性趨勢分析
案例:產品銷售季節(jié)性趨勢預測分析
S曲線與新產品銷量預測
如何評估銷量增長的拐點
珀爾曲線與龔鉑茲曲線
案例:如何預測產品的銷售增長拐點,以及銷量上限
演練:預測IPad產品的銷量
客戶行為預測
問題:如何評估客戶購買產品的可能性?如何預測客戶的購買行為?如何提取某類客戶的典型特征?如何向客戶精準推薦產品或業(yè)務?分類模型概述
常見分類預測模型
邏輯回歸模型
邏輯回歸模型原理及適用場景
邏輯回歸的種類
二項邏輯回歸
多項邏輯回歸
如何解讀邏輯回歸方程
帶分類自變量的邏輯回歸分析
多元邏輯回歸案例:如何評估用戶是否會購買某產品(二元邏輯回歸)
案例:多品牌選擇模型分析(多元邏輯回歸)
分類決策樹
問題:如何預測客戶行為?如何識別潛在客戶?
風控:如何識別欠貸者的特征,以及預測欠貸概率?
客戶保有:如何識別流失客戶特征,以及預測客戶流失概率?
決策樹分類簡介
案例:美國零售商(Target)如何預測少女懷孕
演練:識別銀行欠貨風險,提取欠貸者的特征
如何評估分類性能?如何選擇最優(yōu)分類模型?
案例:商場酸奶購買用戶特征提取
案例:客戶流失預警與客戶挽留
案例:識別拖欠銀行貨款者的特征,避免不良貨款
案例:識別電信詐騙者嘴臉,讓通信更安全
人工神經網絡(ANN)
神經網絡概述
神經網絡基本原理
神經網絡的結構
神經網絡的建立步驟
神經網絡的關鍵問題
BP反向傳播網絡(MLP)
徑向基網絡(RBF)
案例:評估銀行用戶拖欠貨款的概率
市場細分模型
問題:我們的客戶有幾類?各類特征是什么?如何實現客戶細分,開發(fā)符合細分市場的新產品?如何提取客戶特征,從而對產品進行市場定位?
市場細分的常用方法
有指導細分
無指導細分
聚類分析
如何更好的了解客戶群體和市場細分?
如何識別客戶群體特征?
如何確定客戶要分成多少適當的類別?
聚類方法原理介紹
聚類方法作用及其適用場景
聚類分析的種類
K均值聚類(快速聚類)
案例:移動三大品牌細分市場合適嗎?
演練:寶潔公司如何選擇新產品試銷區(qū)域?
演練:如何評選優(yōu)秀員工?
演練:中國各省份發(fā)達程度分析,讓數據自動聚類
層次聚類(系統(tǒng)聚類):發(fā)現多個類別
R型聚類與Q型聚類的區(qū)別
案例:中移動如何實現客戶細分及營銷策略
演練:中國省市經濟發(fā)展情況分析(Q型聚類)
演練:裁判評分的標準衡量,避免“黑哨”(R型聚類)
兩步聚類
客戶細分與PCA分析法
PCA主成分分析的原理
PCA分析法的適用場景
演練:利用PCA對汽車客戶群進行細分
演練:如何針對汽車客戶群設計汽車
客戶價值分析
營銷問題:如何評估客戶的價值?不同的價值客戶有何區(qū)別對待?
如何評價客戶生命周期的價值
貼現率與留存率
評估客戶的真實價值
使用雙向表衡量屬性敏感度
變化的邊際利潤
案例:評估營銷行為的合理性
RFM模型(客戶價值評估)
RFM模型,更深入了解你的客戶價值
RFM模型與市場策略
RFM模型與活躍度分析
案例:客戶價值評估與促銷名單
案例:重購用戶特征分析
產品推薦模型
問題:購買A產品的顧客還常常要購買其他什么產品?應該給客戶推薦什么產品最有可能被接受?
常用產品推薦模型
關聯(lián)分析
如何制定套餐,實現交叉/捆綁銷售
案例:啤酒與尿布、颶風與蛋撻關聯(lián)分析模型原理(Association)
關聯(lián)規(guī)則的兩個關鍵參數
支持度
置信度
關聯(lián)分析的適用場景
案例:購物籃分析與產品捆綁銷售/布局優(yōu)化
案例:理財產品的交叉銷售與產品推薦
協(xié)同過濾
產品設計與優(yōu)化
聯(lián)合分析法
離散選擇模型
如何評估客戶購買產品的概率
如何指導產品開發(fā)?如何確定產品的重要特性
競爭下的產品動態(tài)調價
如何評估產品的價格彈性
案例:產品開發(fā)與設計分析
案例:品牌價值與價格敏感度分析
案例:納什均衡價格
品牌價值評估
新產品市場占有率評估
產品定價策略及最優(yōu)定價
營銷問題:產品如何實現最估定價?套餐價格如何確定?采用哪些定價策略可達到利潤最大化?
常見的定價方法
產品定價的理論依據
需求曲線與利潤最大化
如何求解最優(yōu)定價
案例:產品最優(yōu)定價求解
如何評估需求曲線
價格彈性
曲線方程(線性、乘冪)
如何做產品組合定價
如何做產品捆綁/套餐定價
最大收益定價(演進規(guī)劃求解)
避免價格反轉的套餐定價
案例:電信公司的寬帶、IPTV、移動電話套餐定價
非線性定價原理
要理解支付意愿曲線
支付意愿曲線與需求曲線的異同
案例:雙重收費如何定價(如會費+按次計費)
階梯定價策略
案例:電力公司如何做階梯定價
數量折扣定價策略
案例:如何通過折扣來實現薄利多銷
定價策略的評估與選擇
案例:零售公司如何選擇最優(yōu)定價策略
航空公司的收益管理
收益管理介紹
如何確定機票預訂限制
如何確定機票超售數量
如何評估模型的收益
案例:FBN航空公司如何實現收益管理(預訂/超售)
實戰(zhàn)篇(電信業(yè)客戶流失分析模型)
電信業(yè)客戶流失預警與客戶挽留模型
銀行欠貸風險預測模型
結束:課程總結與問題答疑。
傅一航老師的其它課程
數據分析方法及生產運營實際應用 06.20
數據分析方法及生產運營實際應用【課程目標】本課程主要介紹數據分析在生產運營過程中的應用,適用于制造行業(yè)/保險行業(yè)的數據分析人員等。本課程的主要目的是,幫助學員了解大數據的本質,培養(yǎng)學員的數據意識和數據思維,掌握常用的統(tǒng)計分析方法和工具,以及生產、運營過程中的應用,并以概率的方式來進行決策,提升學員的數據分析及應用能力。本課程具體內容包括:數據決策邏輯,數據決
講師:傅一航詳情
大數據建模大賽輔導實戰(zhàn)【課程目標】本課程主要面向專業(yè)人士的大數據建模競賽輔導需求(假定學員已經完成Python建模及優(yōu)化--回歸篇/分類篇的學習)。通過本課程的學習,達到如下目的:熟悉大賽常用集成模型掌握模型優(yōu)化常用措施,掌握超參優(yōu)化策略掌握特征工程處理,以及對模型質量的影響掌握建模工程管道類(Pipeline,ColumnTransformer)的使用【授
講師:傅一航詳情
大數據時代下的精準營銷(1天) 06.20
大數據時代的精準營銷【課程目標】本課程從實際的市場營銷問題出發(fā),了解大數據在市場營銷領域的價值以及應用。并對大數據分析與挖掘技術進行了介紹,通過從大量的市場營銷數據中分析潛在的客戶特征,挖掘客戶行為特點,實現精準營銷,幫助市場營銷團隊深入理解業(yè)務運作,支持業(yè)務策略制定以及營銷決策。通過本課程的學習,達到如下目的:了解大數據營銷內容,掌握大數據在營銷中的應用。
講師:傅一航詳情
大數據時代下的精準營銷(1天-金融行業(yè)) 06.20
大數據時代的精準營銷【課程目標】本課程從實際的市場營銷問題出發(fā),了解大數據在市場營銷領域的價值以及應用。并對大數據分析與挖掘技術進行了介紹,通過從大量的市場營銷數據中分析潛在的客戶特征,挖掘客戶行為特點,實現精準營銷,幫助市場營銷團隊深入理解業(yè)務運作,支持業(yè)務策略制定以及營銷決策。通過本課程的學習,達到如下目的:了解大數據營銷內容,掌握大數據在營銷中的應用。
講師:傅一航詳情
大數據決策思維與商業(yè)模式創(chuàng)新,賦能企業(yè)增長【課程目標】本課程主要幫助大家理解大數據的基本概念,著重探索大數據的本質,理解大數據的核心價值,以及掌握實現大數據價值的三個關鍵環(huán)節(jié),大數據解決業(yè)務問題的六個步驟,然后聚焦大數據的七大核心思維,最后,再用案例說明了大數據在各行業(yè)的應用場景。大數據思維,讓決策更科學!讓管理更高效!讓營銷更精準!通過本課程的學習,達到如
講師:傅一航詳情
大數據思維與數字化轉型(2天) 06.20
大數據思維與應用創(chuàng)新【課程目標】本課程主要幫助大家理解大數據的基本概念,著重探索大數據的本質,理解大數據的核心價值,以及掌握實現大數據價值的三個關鍵環(huán)節(jié),大數據解決業(yè)務問題的六個步驟,然后聚焦大數據的七大核心思維,最后,再用案例說明了大數據在各行業(yè)的應用場景。大數據思維,讓決策更科學!讓管理更高效!讓營銷更精準!通過本課程的學習,達到如下目的:了解大數據基本
講師:傅一航詳情
大數據思維與應用創(chuàng)新(1天) 06.20
大數據思維與應用創(chuàng)新【課程目標】本課程主要幫助大家理解大數據的基本概念,著重探索大數據的本質,理解大數據的核心價值,以及掌握實現大數據價值的三個關鍵環(huán)節(jié),大數據解決業(yè)務問題的六個步驟,然后聚焦大數據的七大核心思維,最后,再用案例說明了大數據在各行業(yè)的應用場景。大數據思維,讓決策更科學!讓管理更高效!讓營銷更精準!通過本課程的學習,達到如下目的:了解大數據基本
講師:傅一航詳情
大數據思維與應用創(chuàng)新【課程目標】本課程主要幫助大家理解大數據的基本概念,著重探索大數據的本質,理解大數據的核心價值,以及掌握實現大數據價值的三個關鍵環(huán)節(jié),大數據解決業(yè)務問題的六個步驟,然后聚焦大數據的七大核心思維,最后,再用案例說明了大數據在各行業(yè)的應用場景。大數據思維,讓決策更科學!讓管理更高效!讓營銷更精準!通過本課程的學習,達到如下目的:了解大數據基本
講師:傅一航詳情
大數據挖掘工具:SPSSStatistics入門與提高【課程目標】本課程為數據分析和挖掘的工具篇,本課程面向數據分析部等專門負責數據分析與挖掘的人士,專注大數據挖掘工具SPSSStatistics的培訓。IBMSPSS工具是面向非專業(yè)人士的高級的分析工具(挖掘工具),它提供大量的分析方法和分析模型,能夠解決更復雜的業(yè)務問題,比如影響因素分析、客戶行為預測/精
講師:傅一航詳情
- [潘文富] 中小企業(yè)招聘廣告的內容完
- [潘文富] 優(yōu)化考核方式,減少員工抵
- [潘文富] 廠家心目中的理想化經銷商
- [潘文富] 經銷商的產品驅動與管理驅
- [潘文富] 消費行為的背后
- [王曉楠] 輔警轉正方式,定向招錄成為
- [王曉楠] 西安老師招聘要求,西安各區(qū)
- [王曉楠] 西安中小學教師薪資福利待遇
- [王曉楠] 什么是備案制教師?備案制教
- [王曉楠] 2024年陜西省及西安市最
- 1社會保障基礎知識(ppt) 21158
- 2安全生產事故案例分析(ppt) 20229
- 3行政專員崗位職責 19044
- 4品管部崗位職責與任職要求 16222
- 5員工守則 15459
- 6軟件驗收報告 15393
- 7問卷調查表(范例) 15113
- 8工資發(fā)放明細表 14554
- 9文件簽收單 14194