《大數據分類模型及市場專題模型實戰(zhàn)》課綱(2-3天-高級)

  培訓講師:傅一航

講師背景:
傅一航,華為系大數據專家。傅一航,男,計算機軟件與理論碩士研究生(研究方向:數據挖掘、搜索引擎)。在華為工作十年,五篇國家專利,在華為工作期間獲得華為數項獎項,曾在英國、日本、荷蘭等國家做項目,對大數據有深入的研究。傅老師專注于大數據分析與 詳細>>

傅一航
    課程咨詢電話:

《大數據分類模型及市場專題模型實戰(zhàn)》課綱(2-3天-高級)詳細內容

《大數據分類模型及市場專題模型實戰(zhàn)》課綱(2-3天-高級)

大數據分析與挖掘綜合能力提升實戰(zhàn)
【課程目標】
本課程為高級課程,培訓的內容是繼中級課程之后學習的,同時提供了更復雜的數據模型來解決實際工作中的商業(yè)決策問題。
本課程面向高級數據分析人員,以及系統(tǒng)開發(fā)人員。
本課程核心內容為數據挖掘,分類預測模型,以及專題模型分析,幫助學員構建系統(tǒng)全面的業(yè)務分析思維,提升學員的數據分析綜合能力。
本課程覆蓋了如下內容:
數據建模過程
分類預測模型
分類模型優(yōu)化思路
市場專題分析模型
本系列課程從實際的業(yè)務需求出發(fā),結合行業(yè)的典型應用特點,圍繞實際的商業(yè)問題,對數據分析及數據挖掘技術進行了全面的介紹(從數據收集與處理,到數據分析與挖掘,再到數據可視化和報告撰寫),通過大量的操作演練,幫助學員掌握數據分析和數據挖掘的思路、方法、表達、工具,從大量的企業(yè)經營數據中進行分析,挖掘客戶行為特點,幫助運營團隊深入理解業(yè)務運作,以達到提升學員的數據綜合分析能力,支撐運營決策的目的。
通過本課程的學習,達到如下目的:
熟悉建模的一般過程,能夠獨立完成整個預測建模項目的實現。
熟練使用各種分類預測模型,以及其應用場景。
熟悉模型質量評估的關鍵指標,掌握模型優(yōu)化的整體思路。
熟練掌握常用市場專題分析模型:
學會做市場客戶細分,劃分客戶群
學會實現客戶價值評估
學會產品功能設計與優(yōu)化
掌握產品精準推薦模型,學會推薦產品
熟悉產品定價策略,尋找產品最優(yōu)定價
【授課時間】
2-3天時間
【授課對象】
業(yè)務支撐部、運營分析部、數據分析部、大數據系統(tǒng)開發(fā)部等對業(yè)務數據分析有較高要求的相關人員?!緦W員要求】
每個學員自備一臺便攜機(必須)。
便攜機中事先安裝好Microsoft Office Excel 2013版本及以上。
便攜機中事先安裝好IBM SPSS Statistics v24版本及以上。
注:講師可以提供試用版本軟件及分析數據源。
【授課方式】
數據分析基礎 + 方法講解 + 實際業(yè)務問題分析 + 工具實踐操作
采用互動式教學,圍繞業(yè)務問題,展開數據分析過程,全過程演練操作,讓學員在分析、分享、講授、總結、自我實踐過程中獲得能力提升。
【課程大綱】
數據建模過程
預測建模六步法
選擇模型:基于業(yè)務選擇恰當的數據模型
屬性篩選:選擇對目標變量有顯著影響的屬性來建模
訓練模型:采用合適的算法對模型進行訓練,尋找到最合適的模型參數
評估模型:進行評估模型的質量,判斷模型是否可用
優(yōu)化模型:如果評估結果不理想,則需要對模型進行優(yōu)化
應用模型:如果評估結果滿足要求,則可應用模型于業(yè)務場景
數據挖掘常用的模型
數值預測模型:回歸預測、時序預測等
分類預測模型:邏輯回歸、決策樹、神經網絡、支持向量機等
市場細分:聚類、RFM、PCA等
產品推薦:關聯分析、協(xié)同過濾等
產品優(yōu)化:回歸、隨機效用等
產品定價:定價策略/最優(yōu)定價等
屬性篩選/特征選擇/變量降維
基于變量本身特征
基于相關性判斷
因子合并(PCA等)
IV值篩選(評分卡使用)
基于信息增益判斷(決策樹使用)
模型評估
模型質量評估指標:R^2、正確率/查全率/查準率/特異性等
預測值評估指標:MAD、MSE/RMSE、MAPE、概率等
模型評估方法:留出法、K拆交叉驗證、自助法等
其它評估:過擬合評估
模型優(yōu)化
優(yōu)化模型:選擇新模型/修改模型
優(yōu)化數據:新增顯著自變量
優(yōu)化公式:采用新的計算公式
模型實現算法(暫略)
好模型是優(yōu)化出來的
案例:通信客戶流失分析及預警模型
分類預測模型
問題:如何評估客戶購買產品的可能性?如何預測客戶的購買行為?如何提取某類客戶的典型特征?如何向客戶精準推薦產品或業(yè)務?
分類模型概述
常見分類預測模型
邏輯回歸模型
邏輯回歸模型原理及適用場景
邏輯回歸的種類
二項邏輯回歸
多項邏輯回歸
如何解讀邏輯回歸方程
帶分類自變量的邏輯回歸分析
多元邏輯回歸案例:如何評估用戶是否會購買某產品(二元邏輯回歸)
案例:多品牌選擇模型分析(多元邏輯回歸)
分類決策樹(DT)
問題:如何預測客戶行為?如何識別潛在客戶?
風控:如何識別欠貸者的特征,以及預測欠貸概率?
客戶保有:如何識別流失客戶特征,以及預測客戶流失概率?
決策樹分類簡介
案例:美國零售商(Target)如何預測少女懷孕
演練:識別銀行欠貨風險,提取欠貸者的特征
構建決策樹的三個關鍵問題
如何選擇最佳屬性來構建節(jié)點
如何分裂變量
修剪決策樹
選擇最優(yōu)屬性
熵、基尼索引、分類錯誤
屬性劃分增益
如何分裂變量
多元劃分與二元劃分
連續(xù)變量離散化(最優(yōu)劃分點)
修剪決策樹
剪枝原則
預剪枝與后剪枝
構建決策樹的四個算法
C5.0、CHAID、CART、QUEST
各種算法的比較
如何選擇最優(yōu)分類模型?
案例:商場酸奶購買用戶特征提取
案例:客戶流失預警與客戶挽留
案例:識別拖欠銀行貨款者的特征,避免不良貨款
案例:識別電信詐騙者嘴臉,讓通信更安全
人工神經網絡(ANN)
神經網絡概述
神經網絡基本原理
神經網絡的結構
神經網絡的建立步驟
神經網絡的關鍵問題
BP反向傳播網絡(MLP)
徑向基網絡(RBF)
案例:評估銀行用戶拖欠貨款的概率
判別分析(DA)
判別分析原理
距離判別法
典型判別法
貝葉斯判別法
案例:MBA學生錄取判別分析
案例:上市公司類別評估
最近鄰分類(KNN)
基本原理
關鍵問題
貝葉斯分類(NBN)
貝葉斯分類原理
計算類別屬性的條件概率
估計連續(xù)屬性的條件概率
貝葉斯網絡種類:TAN/馬爾科夫毯預測分類概率(計算概率)
案例:評估銀行用戶拖欠貨款的概率
支持向量機(SVM)
SVM基本原理
線性可分問題:最大邊界超平面
線性不可分問題:特征空間的轉換
維空難與核函數
分類模型優(yōu)化
集成方法的基本原理:利用弱分類器構建強分類模型
選取多個數據集,構建多個弱分類器
多個弱分類器投票決定
集成方法/元算法的種類
Bagging算法
Boosting算法
Bagging原理
如何選擇數據集
如何進行投票
隨機森林
Boosting的原理
AdaBoost算法流程
樣本選擇權重計算公式
分類器投票權重計算公式
市場細分模型
問題:我們的客戶有幾類?各類特征是什么?如何實現客戶細分,開發(fā)符合細分市場的新產品?如何提取客戶特征,從而對產品進行市場定位?
市場細分的常用方法
有指導細分
無指導細分
聚類分析
如何更好的了解客戶群體和市場細分?
如何識別客戶群體特征?
如何確定客戶要分成多少適當的類別?
聚類方法原理介紹
聚類方法作用及其適用場景
聚類分析的種類
K均值聚類(快速聚類)
案例:移動三大品牌細分市場合適嗎?
演練:寶潔公司如何選擇新產品試銷區(qū)域?
演練:如何評選優(yōu)秀員工?
演練:中國各省份發(fā)達程度分析,讓數據自動聚類
層次聚類(系統(tǒng)聚類):發(fā)現多個類別
R型聚類與Q型聚類的區(qū)別
案例:中移動如何實現客戶細分及營銷策略
演練:中國省市經濟發(fā)展情況分析(Q型聚類)
演練:裁判評分的標準衡量,避免“黑哨”(R型聚類)
兩步聚類
主成分分析
主成分分析方法介紹
主成分分析基本思想
主成分分析步驟
案例:如何評估汽車購買者的客戶細分市場
客戶價值分析
營銷問題:如何評估客戶的價值?不同的價值客戶有何區(qū)別對待?
如何評價客戶生命周期的價值
貼現率與留存率
評估客戶的真實價值
使用雙向表衡量屬性敏感度
變化的邊際利潤
案例:評估營銷行為的合理性
RFM模型(客戶價值評估)
RFM模型,更深入了解你的客戶價值
RFM模型與市場策略
RFM模型與活躍度分析
案例:淘寶客戶價值評估與促銷名單
案例:重購用戶特征分析
產品推薦模型
問題:購買A產品的顧客還常常要購買其他什么產品?應該給客戶推薦什么產品最有可能被接受?
常用產品推薦模型
關聯分析
如何制定套餐,實現交叉/捆綁銷售
案例:啤酒與尿布、颶風與蛋撻關聯分析模型原理(Association)
關聯規(guī)則的兩個關鍵參數
支持度
置信度
關聯分析的適用場景
案例:購物籃分析與產品捆綁銷售/布局優(yōu)化
案例:通信產品的交叉銷售與產品推薦
協(xié)同過濾
產品設計優(yōu)化
聯合分析法
離散選擇模型
如何評估客戶購買產品的概率
如何指導產品開發(fā)?如何確定產品的重要特性
競爭下的產品動態(tài)調價
如何評估產品的價格彈性
案例:產品開發(fā)與設計分析
案例:品牌價值與價格敏感度分析
案例:納什均衡價格
品牌價值評估
新產品市場占有率評估
產品定價策略及產品最優(yōu)定價
營銷問題:產品如何實現最估定價?套餐價格如何確定?采用哪些定價策略可達到利潤最大化?
常見的定價方法
產品定價的理論依據
需求曲線與利潤最大化
如何求解最優(yōu)定價
案例:產品最優(yōu)定價求解
如何評估需求曲線
價格彈性
曲線方程(線性、乘冪)
如何做產品組合定價
如何做產品捆綁/套餐定價
最大收益定價(演進規(guī)劃求解)
避免價格反轉的套餐定價
案例:電信公司的寬帶、IPTV、移動電話套餐定價
非線性定價原理
要理解支付意愿曲線
支付意愿曲線與需求曲線的異同
案例:雙重收費如何定價(如會費+按次計費)
階梯定價策略
案例:電力公司如何做階梯定價
數量折扣定價策略
案例:如何通過折扣來實現薄利多銷
定價策略的評估與選擇
案例:零售公司如何選擇最優(yōu)定價策略
航空公司的收益管理
收益管理介紹
如何確定機票預訂限制
如何確定機票超售數量
如何評估模型的收益
案例:FBN航空公司如何實現收益管理(預訂/超售)
信用評分卡模型信用評分卡模型簡介
評分卡的關鍵問題
信用評分卡建立過程
篩選重要屬性
數據集轉化
建立分類模型
計算屬性分值
確定審批閾值
篩選重要屬性
屬性分段
基本概念:WOE、IV
屬性重要性評估
數據集轉化
連續(xù)屬性最優(yōu)分段
計算屬性取值的WOE
建立分類模型
訓練邏輯回歸模型
評估模型
得到字段系數
計算屬性分值
計算補償與刻度值
計算各字段得分
生成評分卡
確定審批閾值
畫K-S曲線
計算K-S值
獲取最優(yōu)閾值
實戰(zhàn)篇
電信業(yè)客戶流失預警和客戶挽留模型實戰(zhàn)
銀行欠貸風險預測模型實戰(zhàn)
銀行信用卡評分模型實戰(zhàn)
結束:課程總結與問題答疑。

 

傅一航老師的其它課程

數據分析方法及生產運營實際應用【課程目標】本課程主要介紹數據分析在生產運營過程中的應用,適用于制造行業(yè)/保險行業(yè)的數據分析人員等。本課程的主要目的是,幫助學員了解大數據的本質,培養(yǎng)學員的數據意識和數據思維,掌握常用的統(tǒng)計分析方法和工具,以及生產、運營過程中的應用,并以概率的方式來進行決策,提升學員的數據分析及應用能力。本課程具體內容包括:數據決策邏輯,數據決

 講師:傅一航詳情


大數據建模大賽輔導實戰(zhàn)【課程目標】本課程主要面向專業(yè)人士的大數據建模競賽輔導需求(假定學員已經完成Python建模及優(yōu)化--回歸篇/分類篇的學習)。通過本課程的學習,達到如下目的:熟悉大賽常用集成模型掌握模型優(yōu)化常用措施,掌握超參優(yōu)化策略掌握特征工程處理,以及對模型質量的影響掌握建模工程管道類(Pipeline,ColumnTransformer)的使用【授

 講師:傅一航詳情


大數據時代的精準營銷【課程目標】本課程從實際的市場營銷問題出發(fā),了解大數據在市場營銷領域的價值以及應用。并對大數據分析與挖掘技術進行了介紹,通過從大量的市場營銷數據中分析潛在的客戶特征,挖掘客戶行為特點,實現精準營銷,幫助市場營銷團隊深入理解業(yè)務運作,支持業(yè)務策略制定以及營銷決策。通過本課程的學習,達到如下目的:了解大數據營銷內容,掌握大數據在營銷中的應用。

 講師:傅一航詳情


大數據時代的精準營銷【課程目標】本課程從實際的市場營銷問題出發(fā),了解大數據在市場營銷領域的價值以及應用。并對大數據分析與挖掘技術進行了介紹,通過從大量的市場營銷數據中分析潛在的客戶特征,挖掘客戶行為特點,實現精準營銷,幫助市場營銷團隊深入理解業(yè)務運作,支持業(yè)務策略制定以及營銷決策。通過本課程的學習,達到如下目的:了解大數據營銷內容,掌握大數據在營銷中的應用。

 講師:傅一航詳情


大數據決策思維與商業(yè)模式創(chuàng)新,賦能企業(yè)增長【課程目標】本課程主要幫助大家理解大數據的基本概念,著重探索大數據的本質,理解大數據的核心價值,以及掌握實現大數據價值的三個關鍵環(huán)節(jié),大數據解決業(yè)務問題的六個步驟,然后聚焦大數據的七大核心思維,最后,再用案例說明了大數據在各行業(yè)的應用場景。大數據思維,讓決策更科學!讓管理更高效!讓營銷更精準!通過本課程的學習,達到如

 講師:傅一航詳情


大數據思維與應用創(chuàng)新【課程目標】本課程主要幫助大家理解大數據的基本概念,著重探索大數據的本質,理解大數據的核心價值,以及掌握實現大數據價值的三個關鍵環(huán)節(jié),大數據解決業(yè)務問題的六個步驟,然后聚焦大數據的七大核心思維,最后,再用案例說明了大數據在各行業(yè)的應用場景。大數據思維,讓決策更科學!讓管理更高效!讓營銷更精準!通過本課程的學習,達到如下目的:了解大數據基本

 講師:傅一航詳情


大數據思維與應用創(chuàng)新【課程目標】本課程主要幫助大家理解大數據的基本概念,著重探索大數據的本質,理解大數據的核心價值,以及掌握實現大數據價值的三個關鍵環(huán)節(jié),大數據解決業(yè)務問題的六個步驟,然后聚焦大數據的七大核心思維,最后,再用案例說明了大數據在各行業(yè)的應用場景。大數據思維,讓決策更科學!讓管理更高效!讓營銷更精準!通過本課程的學習,達到如下目的:了解大數據基本

 講師:傅一航詳情


大數據思維與應用創(chuàng)新【課程目標】本課程主要幫助大家理解大數據的基本概念,著重探索大數據的本質,理解大數據的核心價值,以及掌握實現大數據價值的三個關鍵環(huán)節(jié),大數據解決業(yè)務問題的六個步驟,然后聚焦大數據的七大核心思維,最后,再用案例說明了大數據在各行業(yè)的應用場景。大數據思維,讓決策更科學!讓管理更高效!讓營銷更精準!通過本課程的學習,達到如下目的:了解大數據基本

 講師:傅一航詳情


大數據挖掘工具:SPSSStatistics入門與提高【課程目標】本課程為數據分析和挖掘的工具篇,本課程面向數據分析部等專門負責數據分析與挖掘的人士,專注大數據挖掘工具SPSSStatistics的培訓。IBMSPSS工具是面向非專業(yè)人士的高級的分析工具(挖掘工具),它提供大量的分析方法和分析模型,能夠解決更復雜的業(yè)務問題,比如影響因素分析、客戶行為預測/精

 講師:傅一航詳情


金融行業(yè)風險預測模型實戰(zhàn)【課程目標】本課程專注于金融行業(yè)的風控模型,面向數據分析部等專門負責數據分析與建模的人士。本課程的主要目的是,培養(yǎng)學員的大數據意識和大數據思維,掌握常用的數據分析方法和數據分析模型,并能夠用于對客戶行為作分析和預測,提升學員的數據分析綜合能力。通過本課程的學習,達到如下目的:掌握數據分析和數據建模的基本過程和步驟掌握客戶行為分析中常用

 講師:傅一航詳情


COPYRIGT @ 2001-2018 HTTP://kunyu-store.cn INC. ALL RIGHTS RESERVED. 管理資源網 版權所有