大數(shù)據(jù)挖掘之SPSS工具入門(mén)與提高培訓(xùn)(2-4天)
培訓(xùn)講師:尹傳亮
講師背景:
尹傳亮——平安金融高級(jí)工程師10年以上的IT工作經(jīng)驗(yàn),研發(fā)出身,在產(chǎn)品設(shè)計(jì),項(xiàng)目管理均有著豐富的實(shí)戰(zhàn)經(jīng)驗(yàn)。14-15年,作為產(chǎn)品經(jīng)理,參與公司爬蟲(chóng)系統(tǒng)設(shè)計(jì)。15-16年,作為項(xiàng)目負(fù)責(zé)人,帶隊(duì)在華為實(shí)施爬蟲(chóng)項(xiàng)目,并在期間打磨爬蟲(chóng)系統(tǒng),數(shù)據(jù)爬取 詳細(xì)>>
大數(shù)據(jù)挖掘之SPSS工具入門(mén)與提高培訓(xùn)(2-4天)詳細(xì)內(nèi)容
大數(shù)據(jù)挖掘之SPSS工具入門(mén)與提高培訓(xùn)(2-4天)
大數(shù)據(jù)挖掘工具: SPSS Statistics入門(mén)與提高【課程目標(biāo)】
隨著大數(shù)據(jù)分析的需求越來(lái)越旺盛,大數(shù)據(jù)分析工具也越來(lái)越琳瑯滿(mǎn)目,然而,絕大多數(shù)的分析工具都只具有單一用途,無(wú)法滿(mǎn)足企業(yè)的復(fù)雜的多樣化的全面的業(yè)務(wù)分析需求,因此分析工具的選擇成為了一個(gè)挑戰(zhàn)。
一個(gè)良好的分析工具必須滿(mǎn)足如下要求:
易學(xué)易用易操作。
分析效率要高。
滿(mǎn)足業(yè)務(wù)分析需求。
如果要說(shuō)前兩個(gè)要求,顯然類(lèi)似于Excel/Power BI/Tableau等工具都是滿(mǎn)足要求的,但此類(lèi)工具卻無(wú)法解決更復(fù)雜的業(yè)務(wù)問(wèn)題,比如影響因素分析、客戶(hù)行為預(yù)測(cè)/精準(zhǔn)營(yíng)銷(xiāo)、客戶(hù)群劃分、產(chǎn)品交叉銷(xiāo)售、產(chǎn)品銷(xiāo)量預(yù)測(cè)等等,這些需求用Excel/PBI等工具就難以勝任了,需要用到更高級(jí)的數(shù)據(jù)挖掘工具,比如IBM SPSS工具。IBM SPSS工具是面向非專(zhuān)業(yè)人士的高級(jí)的分析工具(挖掘工具),它提供大量的分析方法和分析模型,能夠解決的業(yè)務(wù)問(wèn)題更豐富,提供了更加強(qiáng)大的業(yè)務(wù)數(shù)據(jù)分析功能,并且它封裝了具體的分析算法,即使你沒(méi)有深厚的技能能力,也能夠勝任復(fù)雜的數(shù)據(jù)分析和挖掘。
本課程面向數(shù)據(jù)分析部等專(zhuān)門(mén)負(fù)責(zé)數(shù)據(jù)分析與挖掘的人士,專(zhuān)注大數(shù)據(jù)挖掘工具SPSS Statistics的培訓(xùn)。
本課程從實(shí)際的業(yè)務(wù)需求出發(fā),對(duì)數(shù)據(jù)分析及數(shù)據(jù)挖掘技術(shù)進(jìn)行了全面的介紹,將數(shù)據(jù)挖掘標(biāo)準(zhǔn)流程、分析思路、分析方法、分析模型,全部落地在SPSS工具中,通過(guò)大量的工具操作和演練,幫助學(xué)員熟練掌握SPSS工具的使用,并能夠?qū)PSS工具在實(shí)際的業(yè)務(wù)數(shù)據(jù)分析中滿(mǎn)地,實(shí)現(xiàn)“知行合一”。
通過(guò)本課程的學(xué)習(xí),達(dá)到如下目的:
了解大數(shù)據(jù)挖掘的標(biāo)準(zhǔn)過(guò)程和挖掘步驟。
掌握基本的統(tǒng)計(jì)分析,常用的影響因素分析。
理解數(shù)據(jù)挖掘的常見(jiàn)模型,原理及適用場(chǎng)景。
熟練掌握SPSS基本操作,能利用SPSS解決實(shí)際的商業(yè)問(wèn)題。
【授課時(shí)間】
2~4天時(shí)間,或根據(jù)客戶(hù)需求選擇(每天6個(gè)小時(shí))
知識(shí)點(diǎn)
2天
4天
數(shù)據(jù)挖掘標(biāo)準(zhǔn)流程
√
√
數(shù)據(jù)流預(yù)處理
√
√
數(shù)據(jù)可視化
√
√
影響因素分析
√
√
數(shù)值預(yù)測(cè)模型
√回歸時(shí)序
√季節(jié)模型
回歸模型優(yōu)化
√
分類(lèi)預(yù)測(cè)模型
√僅決策樹(shù)
√ANN/SVM/…
市場(chǎng)客戶(hù)劃分
√
客戶(hù)價(jià)值評(píng)估
√
假設(shè)檢驗(yàn)
√
實(shí)戰(zhàn)
√
【授課對(duì)象】
市場(chǎng)部、業(yè)務(wù)支撐部、數(shù)據(jù)分析部、運(yùn)營(yíng)分析部等對(duì)業(yè)務(wù)數(shù)據(jù)分析有較高要求的相關(guān)人員?!緦W(xué)員要求】
每個(gè)學(xué)員自備一臺(tái)便攜機(jī)(必須)。
便攜機(jī)中事先安裝好Microsoft Office Excel 2013版本及以上。
便攜機(jī)中事先安裝好SPSS Statistics v24版本及以上。
注:講師可以提供試用版本軟件及分析數(shù)據(jù)源。
【授課方式】
基礎(chǔ)知識(shí)精講 + 案例演練 + 實(shí)際業(yè)務(wù)問(wèn)題分析 + 工具實(shí)際操作
本課程突出數(shù)據(jù)挖掘的實(shí)際應(yīng)用,結(jié)合行業(yè)的典型應(yīng)用特點(diǎn),從實(shí)際問(wèn)題入手,引出相關(guān)知識(shí),進(jìn)行大數(shù)據(jù)的收集與處理;引導(dǎo)學(xué)員思考,構(gòu)建分析模型,進(jìn)行數(shù)據(jù)分析與挖掘,以及數(shù)據(jù)呈現(xiàn)與解讀,全過(guò)程演練操作,以達(dá)到提升學(xué)員的數(shù)據(jù)綜合分析能力,支撐運(yùn)營(yíng)決策的目的。
【課程大綱】
數(shù)據(jù)挖掘標(biāo)準(zhǔn)流程
數(shù)據(jù)挖掘概述
數(shù)據(jù)挖掘的標(biāo)準(zhǔn)流程(CRISP-DM)
商業(yè)理解
數(shù)據(jù)準(zhǔn)備
數(shù)據(jù)理解
模型建立
模型評(píng)估
模型應(yīng)用
案例:客戶(hù)流失預(yù)測(cè)及客戶(hù)挽留
數(shù)據(jù)集的基本知識(shí)
存儲(chǔ)類(lèi)型
統(tǒng)計(jì)類(lèi)型
角度
SPSS工具簡(jiǎn)介
數(shù)據(jù)預(yù)處理過(guò)程
數(shù)據(jù)預(yù)處理的基本步驟
數(shù)據(jù)讀取、數(shù)據(jù)理解、數(shù)據(jù)處理、變量處理、探索分析
數(shù)據(jù)預(yù)處理的主要任務(wù)
數(shù)據(jù)集成:多個(gè)數(shù)據(jù)集的合并
數(shù)據(jù)清理:異常值的處理
數(shù)據(jù)處理:數(shù)據(jù)篩選、數(shù)據(jù)精簡(jiǎn)、數(shù)據(jù)平衡
變量處理:變量變換、變量派生、變量精簡(jiǎn)
數(shù)據(jù)歸約:實(shí)現(xiàn)降維,避免維災(zāi)難
數(shù)據(jù)集成
外部數(shù)據(jù)讀入:Txt/Excel/SPSS/Database
數(shù)據(jù)追加(添加數(shù)據(jù))
變量合并(添加變量)
數(shù)據(jù)理解(異常數(shù)據(jù)處理)
取值范圍限定
重復(fù)值處理
無(wú)效值/錯(cuò)誤值處理
缺失值處理
離群值/極端值處理
數(shù)據(jù)質(zhì)量評(píng)估
數(shù)據(jù)準(zhǔn)備:數(shù)據(jù)處理
數(shù)據(jù)篩選:數(shù)據(jù)抽樣/選擇(減少樣本數(shù)量)
數(shù)據(jù)精簡(jiǎn):數(shù)據(jù)分段/離散化(減少變量的取值個(gè)數(shù))
數(shù)據(jù)平衡:正反樣本比例均衡
數(shù)據(jù)準(zhǔn)備:變量處理
變量變換:原變量取值更新,比如標(biāo)準(zhǔn)化
變量派生:根據(jù)舊變量生成新的變量
變量精簡(jiǎn):降維,減少變量個(gè)數(shù)
數(shù)據(jù)降維
常用降維方法
如何確定變量個(gè)數(shù)
特征選擇:選擇重要變量,剔除不重要的變量
從變量本身考慮
從輸入變量與目標(biāo)變量的相關(guān)性考慮
對(duì)輸入變量進(jìn)行合并
因子分析(主成分分析)
因子分析的原理
因子個(gè)數(shù)如何選擇
如何解讀因子含義
案例:提取影響電信客戶(hù)流失的主成分分析
數(shù)據(jù)探索性分析
常用統(tǒng)計(jì)指標(biāo)分析
單變量:數(shù)值變量/分類(lèi)變量
雙變量:交叉分析/相關(guān)性分析
多變量:特征選擇、因子分析
演練:描述性分析(頻數(shù)、描述、探索、分類(lèi)匯總)
數(shù)據(jù)可視化篇
數(shù)據(jù)可視化的原則
常用可視化工具
常用可視化圖形
柱狀圖、條形圖、餅圖、折線(xiàn)圖、箱圖、散點(diǎn)圖等
圖形的表達(dá)及適用場(chǎng)景
演練:各種圖形繪制
影響因素分析篇
問(wèn)題:如何判斷一個(gè)因素對(duì)另一個(gè)因素有影響?比如營(yíng)銷(xiāo)費(fèi)用是否會(huì)影響銷(xiāo)售額?產(chǎn)品價(jià)格是否會(huì)影響銷(xiāo)量?產(chǎn)品的陳列位置是否會(huì)影響銷(xiāo)量?
風(fēng)險(xiǎn)控制的關(guān)鍵因素有哪些?如何判斷?
影響因素分析的常見(jiàn)方法
相關(guān)分析(衡量變量間的的相關(guān)性)
問(wèn)題:這兩個(gè)屬性是否會(huì)相互影響?影響程度大嗎?營(yíng)銷(xiāo)費(fèi)用會(huì)影響銷(xiāo)售額嗎?
什么是相關(guān)關(guān)系
相關(guān)系數(shù):衡量相關(guān)程度的指標(biāo)
相關(guān)系數(shù)的三個(gè)計(jì)算公式
相關(guān)分析的假設(shè)檢驗(yàn)
相關(guān)分析的基本步驟
相關(guān)分析應(yīng)用場(chǎng)景
演練:體重與腰圍的關(guān)系
演練:營(yíng)銷(xiāo)費(fèi)用會(huì)影響銷(xiāo)售額嗎
演練:哪些因素與汽車(chē)銷(xiāo)量有相關(guān)性
演練:通信費(fèi)用與開(kāi)通月數(shù)的相關(guān)分析
案例:酒樓生意好壞與報(bào)紙銷(xiāo)量的相關(guān)分析
偏相關(guān)分析
距離相關(guān)分析
方差分析
問(wèn)題:哪些才是影響銷(xiāo)量的關(guān)鍵因素?
方差分析解決什么問(wèn)題
方差分析種類(lèi):?jiǎn)我蛩?雙因素可重復(fù)/雙因素?zé)o重復(fù)
方差分析的應(yīng)用場(chǎng)景
方差分析的原理與步驟
如何解決方差分析結(jié)果
演練:終端擺放位置與終端銷(xiāo)量有關(guān)嗎?
演練:開(kāi)通月數(shù)驛客戶(hù)流失的影響分析
演練:客戶(hù)學(xué)歷對(duì)消費(fèi)水平的影響分析
演練:廣告和價(jià)格是影響終端銷(xiāo)量的關(guān)鍵因素嗎
演練:營(yíng)業(yè)員的性別、技能級(jí)別產(chǎn)品銷(xiāo)量有影響嗎?
案例:2015年大學(xué)生工資與父母職業(yè)的關(guān)系
案例:醫(yī)生洗手與嬰兒存活率的關(guān)系
演練:尋找影響產(chǎn)品銷(xiāo)量的關(guān)鍵因素
多因素方差分析原理
多因素方差結(jié)果的解讀
演練:廣告形式、地區(qū)對(duì)銷(xiāo)量的影響因素分析(多因素)
協(xié)方差分析原理
演練:飼料對(duì)生豬體重的影響分析(協(xié)方差分析)
列聯(lián)分析(兩類(lèi)別變量的相關(guān)性分析)
交叉表與列聯(lián)表
卡方檢驗(yàn)的原理
卡方檢驗(yàn)的幾個(gè)計(jì)算公式
列聯(lián)表分析的適用場(chǎng)景
案例:套餐類(lèi)型對(duì)客戶(hù)流失的影響分析
案例:學(xué)歷對(duì)業(yè)務(wù)套餐偏好的影響分析
案例:行業(yè)/規(guī)模對(duì)風(fēng)控的影響分析
數(shù)據(jù)建模過(guò)程篇
預(yù)測(cè)建模六步法
選擇模型:基于業(yè)務(wù)選擇恰當(dāng)?shù)臄?shù)據(jù)模型
屬性篩選:選擇對(duì)目標(biāo)變量有顯著影響的屬性來(lái)建模
訓(xùn)練模型:采用合適的算法對(duì)模型進(jìn)行訓(xùn)練,尋找到最合適的模型參數(shù)
評(píng)估模型:進(jìn)行評(píng)估模型的質(zhì)量,判斷模型是否可用
優(yōu)化模型:如果評(píng)估結(jié)果不理想,則需要對(duì)模型進(jìn)行優(yōu)化
應(yīng)用模型:如果評(píng)估結(jié)果滿(mǎn)足要求,則可應(yīng)用模型于業(yè)務(wù)場(chǎng)景
數(shù)據(jù)挖掘常用的模型
數(shù)值預(yù)測(cè)模型:回歸預(yù)測(cè)、時(shí)序預(yù)測(cè)等
分類(lèi)預(yù)測(cè)模型:邏輯回歸、決策樹(shù)、神經(jīng)網(wǎng)絡(luò)、支持向量機(jī)等
市場(chǎng)細(xì)分:聚類(lèi)、RFM、PCA等
產(chǎn)品推薦:關(guān)聯(lián)分析、協(xié)同過(guò)濾等
產(chǎn)品優(yōu)化:回歸、隨機(jī)效用等
產(chǎn)品定價(jià):定價(jià)策略/最優(yōu)定價(jià)等
屬性篩選/特征選擇/變量降維
基于變量本身特征
基于相關(guān)性判斷
因子合并(PCA等)
IV值篩選(評(píng)分卡使用)
基于信息增益判斷(決策樹(shù)使用)
模型評(píng)估
模型質(zhì)量評(píng)估指標(biāo):R^2、正確率/查全率/查準(zhǔn)率/特異性等
預(yù)測(cè)值評(píng)估指標(biāo):MAD、MSE/RMSE、MAPE、概率等
模型評(píng)估方法:留出法、K拆交叉驗(yàn)證、自助法等
其它評(píng)估:過(guò)擬合評(píng)估
模型優(yōu)化
優(yōu)化模型:選擇新模型/修改模型
優(yōu)化數(shù)據(jù):新增顯著自變量
優(yōu)化公式:采用新的計(jì)算公式
模型實(shí)現(xiàn)算法(暫略)
好模型是優(yōu)化出來(lái)的
案例:通信客戶(hù)流失分析及預(yù)警模型
數(shù)值預(yù)測(cè)模型篇
問(wèn)題:如何預(yù)測(cè)產(chǎn)品的銷(xiāo)量/銷(xiāo)售金額?如果產(chǎn)品跟隨季節(jié)性變動(dòng),該如何預(yù)測(cè)?新產(chǎn)品上市,如果評(píng)估銷(xiāo)量上限及銷(xiāo)售增速?
銷(xiāo)量預(yù)測(cè)與市場(chǎng)預(yù)測(cè)——讓你看得更遠(yuǎn)
回歸預(yù)測(cè)/回歸分析
問(wèn)題:如何預(yù)測(cè)未來(lái)的銷(xiāo)售量(定量分析)?
回歸分析的基本原理和應(yīng)用場(chǎng)景
回歸分析的種類(lèi)(一元/多元、線(xiàn)性/曲線(xiàn))
得到回歸方程的幾種常用方法
回歸分析的五個(gè)步驟與結(jié)果解讀
回歸預(yù)測(cè)結(jié)果評(píng)估(如何評(píng)估預(yù)測(cè)質(zhì)量,如何選擇最佳回歸模型)
演練:散點(diǎn)圖找推廣費(fèi)用與銷(xiāo)售額的關(guān)系(一元線(xiàn)性回歸)
演練:推廣費(fèi)用、辦公費(fèi)用與銷(xiāo)售額的關(guān)系(多元線(xiàn)性回歸)
演練:讓你的營(yíng)銷(xiāo)費(fèi)用預(yù)算更準(zhǔn)確
演練:如何選擇最佳的回歸預(yù)測(cè)模型(曲線(xiàn)回歸)
帶分類(lèi)變量的回歸預(yù)測(cè)
演練:汽車(chē)季度銷(xiāo)量預(yù)測(cè)
演練:工齡、性別與終端銷(xiāo)量的關(guān)系
演練:如何評(píng)估銷(xiāo)售目標(biāo)與資源配置(營(yíng)業(yè)廳)
時(shí)序預(yù)測(cè)
問(wèn)題:隨著時(shí)間變化,未來(lái)的銷(xiāo)量變化趨勢(shì)如何?
時(shí)序分析的應(yīng)用場(chǎng)景(基于時(shí)間的變化規(guī)律)
移動(dòng)平均MA的預(yù)測(cè)原理
指數(shù)平滑ES的預(yù)測(cè)原理
自回歸移動(dòng)平均ARIMA模型
如何評(píng)估預(yù)測(cè)值的準(zhǔn)確性?
案例:銷(xiāo)售額的時(shí)序預(yù)測(cè)及評(píng)估
演練:汽車(chē)銷(xiāo)量預(yù)測(cè)及評(píng)估
演練:電視機(jī)銷(xiāo)量預(yù)測(cè)分析
演練:上海證券交易所綜合指數(shù)收益率序列分析
演練:服裝銷(xiāo)售數(shù)據(jù)季節(jié)性趨勢(shì)預(yù)測(cè)分析
季節(jié)性預(yù)測(cè)模型
季節(jié)性回歸模型的參數(shù)
常用季節(jié)性預(yù)測(cè)模型(相加、相乘)
案例:美國(guó)航空旅客里程的季節(jié)性趨勢(shì)分析
案例:產(chǎn)品銷(xiāo)售季節(jié)性趨勢(shì)預(yù)測(cè)分析
新產(chǎn)品預(yù)測(cè)模型與S曲線(xiàn)
如何評(píng)估銷(xiāo)量增長(zhǎng)的拐點(diǎn)
珀?duì)柷€(xiàn)與龔鉑茲曲線(xiàn)
案例:如何預(yù)測(cè)產(chǎn)品的銷(xiāo)售增長(zhǎng)拐點(diǎn),以及銷(xiāo)量上限
演戲:預(yù)測(cè)IPad產(chǎn)品的銷(xiāo)量
自定義模型(如何利用規(guī)劃求解進(jìn)行自定義模型)
案例:如何對(duì)餐廳客流量進(jìn)行建模及模型優(yōu)化
回歸模型優(yōu)化篇
回歸模型的基本原理
三個(gè)基本概念:總變差、回歸變差、剩余變差
方程的顯著性檢驗(yàn):是否可以做回歸分析?
擬合優(yōu)度檢驗(yàn):回歸模型的質(zhì)量評(píng)估?
因素的顯著性檢驗(yàn):自變量是否可用?
理解標(biāo)準(zhǔn)誤差的含義:預(yù)測(cè)的準(zhǔn)確性?
模型優(yōu)化思路:尋找最佳回歸擬合線(xiàn)
如何處理異常數(shù)據(jù)(殘差與異常值排除)
如何剔除非顯著因素(因素顯著性檢驗(yàn))
如何進(jìn)行非線(xiàn)性關(guān)系檢驗(yàn)
如何進(jìn)行相互作用檢驗(yàn)
如何進(jìn)行多重共線(xiàn)性檢驗(yàn)
如何檢驗(yàn)誤差項(xiàng)
如何判斷模型過(guò)擬合
案例:模型優(yōu)化案例
分類(lèi)預(yù)測(cè)模型篇
問(wèn)題:如何評(píng)估客戶(hù)購(gòu)買(mǎi)產(chǎn)品的可能性?如何預(yù)測(cè)客戶(hù)的購(gòu)買(mǎi)行為?如何提取某類(lèi)客戶(hù)的典型特征?如何向客戶(hù)精準(zhǔn)推薦產(chǎn)品或業(yè)務(wù)?
分類(lèi)模型概述
常見(jiàn)分類(lèi)預(yù)測(cè)模型
評(píng)估分類(lèi)模型的常用指標(biāo)
正確率、查全率/查準(zhǔn)率、特異性等
邏輯回歸模型(LR)
邏輯回歸模型原理及適用場(chǎng)景
邏輯回歸種類(lèi):二項(xiàng)/多項(xiàng)邏輯回歸
如何解讀邏輯回歸方程
案例:如何評(píng)估用戶(hù)是否會(huì)購(gòu)買(mǎi)某產(chǎn)品(二項(xiàng)邏輯回歸)
消費(fèi)者品牌選擇模型分析
案例:多品牌選擇模型分析(多項(xiàng)邏輯回歸)
分類(lèi)決策樹(shù)(DT)
問(wèn)題:如何預(yù)測(cè)客戶(hù)行為?如何識(shí)別潛在客戶(hù)?
風(fēng)控:如何識(shí)別欠貸者的特征,以及預(yù)測(cè)欠貸概率?
客戶(hù)保有:如何識(shí)別流失客戶(hù)特征,以及預(yù)測(cè)客戶(hù)流失概率?
決策樹(shù)分類(lèi)簡(jiǎn)介
如何評(píng)估分類(lèi)性能?
案例:美國(guó)零售商(Target)如何預(yù)測(cè)少女懷孕
演練:識(shí)別銀行欠貨風(fēng)險(xiǎn),提取欠貸者的特征
構(gòu)建決策樹(shù)的三個(gè)關(guān)鍵問(wèn)題
如何選擇最佳屬性來(lái)構(gòu)建節(jié)點(diǎn)
如何分裂變量
修剪決策樹(shù)
選擇最優(yōu)屬性
熵、基尼索引、分類(lèi)錯(cuò)誤
屬性劃分增益
如何分裂變量
多元?jiǎng)澐峙c二元?jiǎng)澐?br />
連續(xù)變量離散化(最優(yōu)劃分點(diǎn))
修剪決策樹(shù)
剪枝原則
預(yù)剪枝與后剪枝
構(gòu)建決策樹(shù)的四個(gè)算法
C5.0、CHAID、CART、QUEST
各種算法的比較
如何選擇最優(yōu)分類(lèi)模型?
案例:商場(chǎng)酸奶購(gòu)買(mǎi)用戶(hù)特征提取
案例:電信運(yùn)營(yíng)商客戶(hù)流失預(yù)警與客戶(hù)挽留
案例:識(shí)別拖欠銀行貨款者的特征,避免不良貨款
案例:識(shí)別電信詐騙者嘴臉,讓通信更安全
人工神經(jīng)網(wǎng)絡(luò)(ANN)
神經(jīng)網(wǎng)絡(luò)概述
神經(jīng)網(wǎng)絡(luò)基本原理
神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)
神經(jīng)網(wǎng)絡(luò)的建立步驟
神經(jīng)網(wǎng)絡(luò)的關(guān)鍵問(wèn)題
BP反向傳播網(wǎng)絡(luò)(MLP)
徑向基網(wǎng)絡(luò)(RBF)
案例:評(píng)估銀行用戶(hù)拖欠貨款的概率
判別分析(DA)
判別分析原理
距離判別法
典型判別法
貝葉斯判別法
案例:MBA學(xué)生錄取判別分析
案例:上市公司類(lèi)別評(píng)估
K近鄰分類(lèi)(KNN)
基本原理
關(guān)鍵問(wèn)題
貝葉斯分類(lèi)(NBN)
貝葉斯分類(lèi)原理
計(jì)算類(lèi)別屬性的條件概率
估計(jì)連續(xù)屬性的條件概率
貝葉斯網(wǎng)絡(luò)種類(lèi):TAN/馬爾科夫毯
預(yù)測(cè)分類(lèi)概率(計(jì)算概率)
案例:評(píng)估銀行用戶(hù)拖欠貨款的概率
支持向量機(jī)(SVM)
SVM基本原理
線(xiàn)性可分問(wèn)題:最大邊界超平面
線(xiàn)性不可分問(wèn)題:特征空間的轉(zhuǎn)換
維空難與核函數(shù)
市場(chǎng)細(xì)分模型篇
問(wèn)題:我們的客戶(hù)有幾類(lèi)?各類(lèi)特征是什么?如何實(shí)現(xiàn)客戶(hù)細(xì)分,開(kāi)發(fā)符合細(xì)分市場(chǎng)的新產(chǎn)品?如何提取客戶(hù)特征,從而對(duì)產(chǎn)品進(jìn)行市場(chǎng)定位?
市場(chǎng)細(xì)分的常用方法
有指導(dǎo)細(xì)分
無(wú)指導(dǎo)細(xì)分
聚類(lèi)分析
如何更好的了解客戶(hù)群體和市場(chǎng)細(xì)分?
如何識(shí)別客戶(hù)群體特征?
如何確定客戶(hù)要分成多少適當(dāng)?shù)念?lèi)別?
聚類(lèi)方法原理介紹
聚類(lèi)方法作用及其適用場(chǎng)景
聚類(lèi)分析的種類(lèi)
K均值聚類(lèi)(快速聚類(lèi))
案例:移動(dòng)三大品牌細(xì)分市場(chǎng)合適嗎?
演練:寶潔公司如何選擇新產(chǎn)品試銷(xiāo)區(qū)域?
演練:如何評(píng)選優(yōu)秀員工?
演練:中國(guó)各省份發(fā)達(dá)程度分析,讓數(shù)據(jù)自動(dòng)聚類(lèi)
層次聚類(lèi)(系統(tǒng)聚類(lèi)):發(fā)現(xiàn)多個(gè)類(lèi)別
R型聚類(lèi)與Q型聚類(lèi)的區(qū)別
案例:中移動(dòng)如何實(shí)現(xiàn)客戶(hù)細(xì)分及營(yíng)銷(xiāo)策略
演練:中國(guó)省市經(jīng)濟(jì)發(fā)展情況分析(Q型聚類(lèi))
演練:裁判評(píng)分的標(biāo)準(zhǔn)衡量,避免“黑哨”(R型聚類(lèi))
兩步聚類(lèi)
主成分分析PCA分析
主成分分析原理
主成分分析基本步驟
主成分分析結(jié)果解讀
演練:PCA探索汽車(chē)購(gòu)買(mǎi)者的細(xì)分市場(chǎng)
RFM模型客戶(hù)細(xì)分框架
客戶(hù)價(jià)值評(píng)估
客戶(hù)價(jià)值評(píng)估與RFM模型
問(wèn)題:如何評(píng)估客戶(hù)的價(jià)值?如何針對(duì)不同客戶(hù)采取不同的營(yíng)銷(xiāo)策略?
RFM模型,更深入了解你的客戶(hù)價(jià)值
RFM的客戶(hù)細(xì)分框架理解
RFM模型與市場(chǎng)策略
RFM模型與活躍度
演練:“雙11”淘寶商家如何選擇客戶(hù)進(jìn)行促銷(xiāo)
演練:結(jié)合響應(yīng)模型,宜家IKE實(shí)現(xiàn)最大化營(yíng)銷(xiāo)利潤(rùn)
演練:重購(gòu)用戶(hù)特征分析
假設(shè)檢驗(yàn)篇
參數(shù)檢驗(yàn)分析(樣本均值檢驗(yàn))
問(wèn)題:如何驗(yàn)證營(yíng)銷(xiāo)效果的有效性?
假設(shè)檢驗(yàn)概述
單樣本T檢驗(yàn)
兩獨(dú)立樣本T檢驗(yàn)
兩配對(duì)樣本T檢驗(yàn)
假設(shè)檢驗(yàn)適用場(chǎng)景
電信行業(yè)
案例:電信運(yùn)營(yíng)商ARPU值評(píng)估分析(單樣本)
案例:營(yíng)銷(xiāo)活動(dòng)前后分析(兩配對(duì)樣本)
金融行業(yè)
案例:信用卡消費(fèi)金額評(píng)估分析(單樣本)
醫(yī)療行業(yè)
案例:吸煙與膽固醇升高的分析(兩獨(dú)立樣本)
案例:減肥效果評(píng)估(兩配對(duì)樣本)
非參數(shù)檢驗(yàn)分析(樣本分布檢驗(yàn))
問(wèn)題:這些屬性數(shù)據(jù)的分布情況如何?如何從數(shù)據(jù)分布中看出問(wèn)題?
非參數(shù)檢驗(yàn)概述
單樣本檢驗(yàn)
兩獨(dú)立樣本檢驗(yàn)
兩相關(guān)樣本檢驗(yàn)
兩配對(duì)樣本檢驗(yàn)
非參數(shù)檢驗(yàn)適用場(chǎng)景
案例:產(chǎn)品合格率檢驗(yàn)(單樣本-二項(xiàng)分布)
案例:訓(xùn)練新方法有效性檢驗(yàn)(兩配對(duì)樣本-符號(hào)/秩檢驗(yàn))
案例:促銷(xiāo)方式效果檢驗(yàn)(多相關(guān)樣本-Friedman檢驗(yàn))
案例:客戶(hù)滿(mǎn)意度差異檢驗(yàn)(多相關(guān)樣本-Cochran Q檢驗(yàn))
實(shí)戰(zhàn)-數(shù)據(jù)挖掘項(xiàng)目
實(shí)戰(zhàn)1:客戶(hù)流失預(yù)警與客戶(hù)挽留之真實(shí)數(shù)據(jù)分析實(shí)踐
實(shí)戰(zhàn)2:銀行信用風(fēng)險(xiǎn)分析
結(jié)束:課程總結(jié)與問(wèn)題答疑。
尹傳亮老師的其它課程
Python機(jī)器學(xué)習(xí)算法實(shí)戰(zhàn)【課程目標(biāo)】本課程為高級(jí)課程,專(zhuān)注于機(jī)器學(xué)習(xí)算法,原理,以及算法實(shí)現(xiàn)及優(yōu)化。通過(guò)本課程的學(xué)習(xí),達(dá)到如下目的:熟悉常見(jiàn)的機(jī)器學(xué)習(xí)的算法。掌握機(jī)器學(xué)習(xí)的算法原理,以及數(shù)據(jù)推導(dǎo)。學(xué)會(huì)使用Python來(lái)實(shí)現(xiàn)機(jī)器學(xué)習(xí)算法,以及優(yōu)化算法。掌握scikit-learn擴(kuò)展庫(kù)來(lái)實(shí)現(xiàn)機(jī)器學(xué)習(xí)算法?!臼谡n時(shí)間】2-3天時(shí)間【授課對(duì)象】IT系統(tǒng)部、大數(shù)
講師:尹傳亮詳情
Python開(kāi)發(fā)語(yǔ)言基礎(chǔ)實(shí)戰(zhàn)培訓(xùn)【課程目標(biāo)】Python已經(jīng)成為穩(wěn)居前三的最受歡迎的語(yǔ)言之一,它簡(jiǎn)單易用、跨平臺(tái)、功能強(qiáng)大、擴(kuò)展性強(qiáng),而且能夠?qū)⑵渌Z(yǔ)言編寫(xiě)的程序融合起來(lái),實(shí)現(xiàn)無(wú)縫連接,號(hào)稱(chēng)是萬(wàn)能膠水語(yǔ)言。本課程為Python語(yǔ)言基礎(chǔ)學(xué)習(xí),通過(guò)本課程的學(xué)習(xí),達(dá)到如下目的:全面掌握Python語(yǔ)言以及其編程思想。掌握Python基本格式,以及常用的6種基本語(yǔ)句
講師:尹傳亮詳情
Python課程 06.19
Python課程一、數(shù)據(jù)挖掘?qū)д摂?shù)據(jù)挖掘的基本任務(wù)與步驟:目標(biāo)、數(shù)據(jù)探索、數(shù)據(jù)預(yù)處理、建模、模型評(píng)價(jià)有監(jiān)督學(xué)習(xí)無(wú)監(jiān)督學(xué)習(xí)和半監(jiān)督學(xué)習(xí)算法模型Sklean數(shù)據(jù)挖掘和機(jī)器學(xué)習(xí)算法庫(kù)介紹大數(shù)據(jù)建模常見(jiàn)問(wèn)題問(wèn)題引出:客戶(hù)行為分析-用戶(hù)用電異常的識(shí)別二、Python編程快速入門(mén)Python編程環(huán)境與語(yǔ)法快速入門(mén)基礎(chǔ)數(shù)據(jù)結(jié)構(gòu):字符串處理及應(yīng)用數(shù)據(jù)結(jié)構(gòu):列表、元組、集合、
講師:尹傳亮詳情
Python實(shí)現(xiàn)大數(shù)據(jù)挖掘技術(shù)培訓(xùn)【課程目標(biāo)】Python已經(jīng)成為數(shù)據(jù)分析和數(shù)據(jù)挖掘的首選語(yǔ)言,作為除了Java、C/C++/C#外最受歡迎的語(yǔ)言。本課程基于Python工具來(lái)實(shí)現(xiàn)大數(shù)據(jù)的數(shù)據(jù)分析和數(shù)據(jù)挖掘項(xiàng)目。基于業(yè)務(wù)問(wèn)題,在數(shù)據(jù)挖掘標(biāo)準(zhǔn)過(guò)程指導(dǎo)下,采用Python分析工具,實(shí)現(xiàn)數(shù)據(jù)挖掘項(xiàng)目的每一步操作,從數(shù)據(jù)預(yù)處理、數(shù)據(jù)建模、數(shù)據(jù)可視化,到最終數(shù)據(jù)挖掘結(jié)
講師:尹傳亮詳情
Python運(yùn)用 06.19
PYTHON數(shù)據(jù)分析第一模塊:python語(yǔ)言基礎(chǔ)知識(shí)0.5H1.python簡(jiǎn)介2.python的特征3.第一個(gè)python程序4.搭建開(kāi)發(fā)環(huán)境5.python的開(kāi)發(fā)工具6.不同平臺(tái)下的python第二模塊:Python的基本語(yǔ)法2H1.Python的文件類(lèi)型2.Python的編碼規(guī)則3.變量和常量4.數(shù)據(jù)類(lèi)型5.運(yùn)算符與表達(dá)式第三模塊:python的控制
講師:尹傳亮詳情
大數(shù)據(jù)變革與商業(yè)模式創(chuàng)新【課程目標(biāo)】大數(shù)據(jù)時(shí)代已經(jīng)來(lái)臨,大數(shù)據(jù)戰(zhàn)略已經(jīng)上升到國(guó)家意志,擁有大數(shù)據(jù)的規(guī)模和利用大數(shù)據(jù)的能力已經(jīng)成為國(guó)家競(jìng)爭(zhēng)力的一種體現(xiàn),大數(shù)據(jù)的重要性已經(jīng)毋庸置疑。本課程圍繞大數(shù)據(jù)產(chǎn)業(yè),從大數(shù)據(jù)的基本面出發(fā),分析大數(shù)據(jù)的應(yīng)用價(jià)值;大數(shù)據(jù)作為工具,如何幫助企業(yè)提升運(yùn)營(yíng)效率,提升企業(yè)利潤(rùn);再到大數(shù)據(jù)引起的思維變革,怎樣改變企業(yè)管理、社會(huì)治理的思維;
講師:尹傳亮詳情
大數(shù)據(jù)時(shí)代的精準(zhǔn)營(yíng)銷(xiāo)【課程目標(biāo)】本課程從實(shí)際的市場(chǎng)營(yíng)銷(xiāo)問(wèn)題出發(fā),了解大數(shù)據(jù)在市場(chǎng)營(yíng)銷(xiāo)領(lǐng)域的價(jià)值以及應(yīng)用。并對(duì)大數(shù)據(jù)分析與挖掘技術(shù)進(jìn)行了介紹,通過(guò)從大量的市場(chǎng)營(yíng)銷(xiāo)數(shù)據(jù)中分析潛在的客戶(hù)特征,挖掘客戶(hù)行為特點(diǎn),實(shí)現(xiàn)精準(zhǔn)營(yíng)銷(xiāo),幫助市場(chǎng)營(yíng)銷(xiāo)團(tuán)隊(duì)深入理解業(yè)務(wù)運(yùn)作,支持業(yè)務(wù)策略制定以及營(yíng)銷(xiāo)決策。通過(guò)本課程的學(xué)習(xí),達(dá)到如下目的:了解大數(shù)據(jù)營(yíng)銷(xiāo)內(nèi)容,掌握大數(shù)據(jù)在營(yíng)銷(xiāo)中的應(yīng)用。
講師:尹傳亮詳情
數(shù)據(jù)分析與建模 06.19
數(shù)據(jù)分析與建模第一章數(shù)據(jù)分析與大數(shù)據(jù)平臺(tái)1.大數(shù)據(jù)相關(guān)概念2.大數(shù)據(jù)特征3.大數(shù)據(jù)平臺(tái)簡(jiǎn)介第二章數(shù)據(jù)分析流程1.數(shù)據(jù)分析2.數(shù)據(jù)分析工具3.數(shù)據(jù)分析流程4.典型模型場(chǎng)景第三章重要的python庫(kù)1.NumPy2.pandas3.matplotlib4.IPython與Jupyter5.SciPy6.scikit-learn7statsmodels第4章Num
講師:尹傳亮詳情
Hadoop大數(shù)據(jù)解決方案平臺(tái)技術(shù)培訓(xùn)【課程目標(biāo)】Hadoop作為開(kāi)源的云計(jì)算平臺(tái),為大數(shù)據(jù)處理提供了一整套解決方案,應(yīng)用非常廣泛。Hadoop作為一個(gè)平臺(tái)框架,包括了如何存儲(chǔ)海量數(shù)據(jù),如何處理海量數(shù)據(jù),以及相應(yīng)的數(shù)據(jù)庫(kù)、數(shù)據(jù)倉(cāng)庫(kù)、數(shù)據(jù)流處理、數(shù)據(jù)分析和挖掘算法庫(kù),等等。本課程主要介紹Hadoop的思想、原理,以及重要技術(shù)等相關(guān)知識(shí)。通過(guò)本課程的學(xué)習(xí),達(dá)到如
講師:尹傳亮詳情
- [潘文富] 經(jīng)銷(xiāo)商終端建設(shè)的基本推進(jìn)
- [潘文富] 中小企業(yè)招聘廣告的內(nèi)容完
- [潘文富] 優(yōu)化考核方式,減少員工抵
- [潘文富] 廠(chǎng)家心目中的理想化經(jīng)銷(xiāo)商
- [潘文富] 經(jīng)銷(xiāo)商的產(chǎn)品驅(qū)動(dòng)與管理驅(qū)
- [王曉楠] 輔警轉(zhuǎn)正方式,定向招錄成為
- [王曉楠] 西安老師招聘要求,西安各區(qū)
- [王曉楠] 西安中小學(xué)教師薪資福利待遇
- [王曉楠] 什么是備案制教師?備案制教
- [王曉楠] 2024年陜西省及西安市最
- 1社會(huì)保障基礎(chǔ)知識(shí)(ppt) 21161
- 2安全生產(chǎn)事故案例分析(ppt) 20243
- 3行政專(zhuān)員崗位職責(zé) 19048
- 4品管部崗位職責(zé)與任職要求 16224
- 5員工守則 15463
- 6軟件驗(yàn)收?qǐng)?bào)告 15398
- 7問(wèn)卷調(diào)查表(范例) 15114
- 8工資發(fā)放明細(xì)表 14556
- 9文件簽收單 14200